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The Adaptive Metropolis algorithm as a tool for model 
selection given irregular and imperfect time-series data

or

How gambling intellegently pays off!

S. Lan Smith, JAMSTEC, Yokohama, Japan

Tutorial
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		  Very Bad							         Bad						     More Info, Still Bad

Bad examples of Model-Data Comparisons

D
ep

th
 (m

)

2          4          6         8         10
Time (d)

Bi
om

as
s 

(μ
M

 C
)

Smith et al. (Deep Sea Res. II 2010) 

Smith et al. (J. Oceanogr. 2005)
Smith et al. (J. Mar Sys. 2007) 

No info about model uncertainty! 

Can these models be trusted? 

How does the range of modelled values 
compare to the observed range?  

Where to expect future obs? 
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A much better Model-Data Comparison

Marko Laine (Fig. 3a, PhD Thesis,  
Lapeenranta Univ. of Tech., Finland, 2008) 
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Range of Expected Obs. 
(model uncertainty + data uncertainty)

Mean Model Result
(mean of the ensemble of output)

Range of Model Uncetainty
(from the ensemble of param. values)

What makes this possible?  
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Conditional probability, p(A | B) 
											             ‘the probability of A given B’
											              i.e, if B is true

Likelihood,	 p( y | Q )
						      ‘probability of observing y given model Q’
						      e.g., p( wet sidewalks | it’s raining ) 

Maximum Likelihood methods 
are widely used to estimate param. values 
i.e., find param. values that maximize the likelihood of the obs.  
This can be useful, but it is NOT sufficient! 

Key Concepts and Terminology
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Bayes Theorem 		

							       p(A | B) p(B) = p(B | A) p(A)

	 p( wet sidewalks | rain ) ≠ p( rain | wet sidewalks )

The Most Important Concept
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Bayes Theorem 		

								        p(Q | y) p(y) = p(y | Q) p(Q)

	 p(Q | y) 		  probability of the model given the data 
	 p(y)				    probability of the observation(s), y 
 	 p(y | Q) 		  Likelihood of obs. y given model Q  
	 p(Q)				   probability of the model, a.k.a. the Prior 

	 Priors are beliefs or estimates before applying the algorithm
		  e.g., expected parameter values, mmax = 1 d-1

	    			   or, distributions: mmax ~ Gaussian(mean = 1, var = 0.25) 

Model-Data comparison
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Posterior, the end result after applying the algorithm
Ensemble, a set of {parameter values, simulations}

Key Concepts and Terminology

Marko Laine (Fig. 5, PhD Thesis,  Lapeenranta Univ. of Tech., Finland, 2008) 
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‘Monte Carlo’ Methods

random sampling, 
as in gambling

sounds more sophisticated than

but is it really? 
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Why Gamble? 

In order to approximate the integrals needed to calculate probabilities

Bayes formula (Laine 2008, eq. 9) 

 (Laine 2008, eq. 10) 

We cannot in general calculate these analytically,  
but we can use computers to approximate them by 
conducting many simulations, 
i.e., discretely sampling the solution space 

and much more...

Hastings, WK (Biometrika 57, 1970)  <- 5, 658 citations (Web of Science Core Collection only)
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A simple example					       Marko Laine (PhD thesis, 2008, Appendix A.3.1

Monod model for growth rate, y				    Data 

number of model simulations

Θ2

Θ1

Posterior Ensemble of 
Parameter Values

Θ2

Θ1

The posterior estimates 
are correlated! 
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Θ2

Θ1

AM samples Efficiently by 
exploiting the Shape of the 
Param. Distribution

‘Adaptive’ is the key word 

Θ2

Θ1

Concentrating sampling 
effort where good solu-
tions are more likely.  

Naive or “Brute Force” 	
samplig wastes effort.

No good solu-
tions here ! 

No good solu-
tions here ! 

Smart Monte Carlo					     		  Dumb Monte Carlo

This becomes much more important for higher 
dimensional problems. 
Imagine fitting 10 parameters! 
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Smart Gambling			  				     		  Reckless Gambling
patient, strategic

Pedro Grendene Bartelle bet big 
and won big (US$ 3.5 millon) at 
the roulette table.

But could he repeat that? 

Less Risk.
Consistent payoffs. 
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The Adaptive Metropolis (AM) Algorithm
Marko Laine (PhD Thesis,  Lapeenranta U. Tech., Finland, 2008) 
Haario et al. (Bernoulli 7, 2001)  <- 876 citations (Web of Science Core Collection only)

Based on the Metropolis-Hastings algorithm, but
modified to adapt its Proposal Function based on its past history
=>		 1. AM is not Markovian. 
			   But it’s more efficient, and it does converge. 
		  2. AM adapts how far & in which direction to “jump” in parameter space. 

Automatically samples the standard errors (Gibbs Sampling),
	 which are used to calculate the Sum of Squares & Likelihood, 
	 yielding an ensemble of sd separately for each data type, d 

 		  SSQEd = S (xmod,n - xobs,n)2

					        n              sd

   =>	Automatic weigthing for data of different kinds, with different units. 
			   Widths of ensembles do indeed cover the range of data.

	 Not sensitive to initial estimates (starting values) of fitted params. 
	 Allows fits of coupled equations with strong non-linearities



XMAS-IV, Xiamen U. 2019.01.08S. Lan Smith p. 14

The Adaptive Metropolis (AM) Algorithm

Haario et al. (Bernoulli 7, 2000)

Marko Laine (PhD Thesis,  Lapeenranta Univ. of Tech., Finland, 2008) 

Metropolis algorithms

	 a broad class of statistical methods for sampling distributions

		  Monte Carlo Markov Chain (MCMC), Simulated Annealing, etc

	 usually ‘Markovian’, i.e., ‘jumps’ depend only on present state

Adaptive

	 here ‘jumps’ do depend on past history 

	 The ‘Proposal function’ decides the direction & magnitude of ‘jumps’

		  Here it is a mult-variate Gaussian distribution,  
		  based on the past ‘chain’ of parameter values already sampled
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The Adaptive Metropolis (AM) Algorithm

Metropolis algorithms

y	 observations

q	 parameters

Bayes Theorem:

p(q|y) = 
p(y|q) p(q)

                      p(y)

p(y|q)  is the Likelihood of observing y given the model (e.g., assuming Gaussian errors) 

p(q)  is the ‘prior estimate’ of q

p(y) is the probability of the observations, which we do not know ... but it cancels out! 

‘accepting’ a jump means ‘moving’ to the new parameter value, q* 

acceptance probability = min( 1, 
p(q*|y) q(q*, q)

 )                                                           p(q|y) q(q , q*)

q(q*, q)  is the ‘transition density', i.e., decides the probability of jumping from q to q* 

p(
q|

y)

Parameter Value, q

Accept every jump to a better p

Accept some jumps to worse p
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Gibbs Sampling for model-data mismatch

If the model-data errors (residuals) are Gaussian

and if we assume a prior such that  s-2 is Gamma distributed

							       p(s-2) ~ G(n0/2, n0S0
2/2)

then the conditional distribution of s-2 , given model and data is

							       p(s-2|y,q) ~ G( (n0+n)/2, (n0S0
2+SR)/2 )

	 where SR is the sum of squared residuals (un-weighted), 

	 and S0 is the prior mean estimate for s 

At each step in the chain, we can then sample the posterior s

	 based on its prior estimate and the sum of squared residuals 

This gives an automatic way to assign weights to the data, 

	 so that the posterior distribution (ensemble of simulated values)

	 will have the same width as, i.e., span or cover, the data
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It’s Automatic!

Parameters specified for the algorithm:

1. prior estimates of parameter values (mean, co-variance)

2. prior estimates of s (one for each data type)
	 and prior estimates of their accuracy, i.e., compared to # of obs.

In most Metropolis algorithms, e.g., MCMC, 
the length scale for jumps in parameters must be specified
but not for AM. 
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Akaike Information Criterion, 

			   AIC = -2logL + 2P +   2P(P+1)
	   								               (N - P - 1)

		  where logL = log likelihood (ensemble mean), 
		  N = no. of observations, P = no. of parameters fitted. 

Difference in AIC for model m, 

		  Dm = AICm - min{AICi} 

Akaike weight for each model:   wm =     exp{-Dm/2}

												                       Sexp{-Di/2}									       
			            									            i

		  relative normalized (0,1) weight that each model is the best of the set of models

		  Anderson et al. (J. Wildlife Mngmt. 64, 2000)

Model Selection

This ratio quantifies relative model skill. 

Marko Laine (2008)), equation 6
see Smith (J. Geophys. Res. 2011) 

for details of how to apply this
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Growth rates increase exponentially with T 
(Eppley. Fish. Bull. 1972; Bissinger et al. L&O 2008). 

For uptake or growth, Vmax is usually assumed 
to be independent of nutrient concentration: 
Michaelis-Menten (MM) kinetics. 

However, Optimal Upake (OU) kinetics predicts
that Vmax (from short-term expts.) should 
increase hyperbolically with nutrient conc. 
(Smith et al. MEPS 2009).  

In the near-surface ocean, T and Nutrient Conc.   
are strongly (negatively) correlated. 

Field expts. observe the combined (net) effects. 

  Assumptions about Uptake Kinetics impact 
  the interpretation of observations.

Example: Inferring Combined Effects of T & N Concentrations

Smith (Geophys. Res. Lett. 2010) 
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KNO3 tends to increase with [NO3]

The trend in field observations agrees with the prediction of 
Optimal Uptake kinetics, although there is wide scatter. 

But does KNO3 not also depend on T ? For one data set 
from the N. Pa-
cific, Smith et al. 
(2009) found a 
weaker relation-
ship with T than 
with [NO3]. 

Here I examine the 
T dependence of 
Vmax and a, in the 
data of Harrison et 
al. (L&O 41, 1996) 

     a =  Vmax

              Ks
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for maximum uptake rate, Vmax, as determined by short-term expts, 

		  T only										         T & [NO3]

       Vmax = V0 e
-EaV/RT

 						     Vmax =    √[NO3]aA0/V0    V0 e
-EaV/RT

											                 			    1 + √[NO3]aA0/V0 

for a, as determined by short-term expts, 

            a = A0 e
-EaA/RT

 						           a =              1             A0 e
-EaA/RT

											                 			    1 + √[NO3]aA0/V0 

  4 parameters were fitted by Adaptive Monte Carlo  
  to a data set for Vmax, a, [NO3]a & T, 
  using both equations simultaneously.

     V0	  potential max. of Vmax
     EaV	 Energy of Activation for Vmax

	 A0	  potential max. of a
    	EaA	 Energy of Activation for a

  3 parameter fits were also tested 

	 assuming EaV = EaA = Ea

Dependence of Vmax and a on T & Nutrient Concentration

This ratio is indepdendent of T 
only if EaA = EaV.

This assumption agrees with the 
fits for KNO3 of Smith et al. (MEPS, 
2009) and with fits to the data for 
Vmax and a, using the data of Har-
rison et al. (1996). 
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Different Inferred Sensitivies to T (for field data from N. Pacific)
			   Affinity model												              OU model

Assuming T dependence only						               	  Both T & Conc. Dependence
		    LogL = -74, AIC = 156										          LogL = -74, AIC = 157 

95%
width of
ensemble
+/- 1.96sa
=> 95% 
of obs. 
should be 
in this 
range.

Solid vertical 
lines show 
width of 
model
predictions
only (not 
including      
error).

Q10 = 6.3 for a

Q10 = 1.7 for Vmax	

Q10 = 2.3 for a

Q10 = 3.3 for Vmax	

A better Model-Data Comparison, using AM		      Smith (J. Geophys. Res. 2011)
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Different Inferred Sensitivies to T (for field data from N. Pacific)
			   Affinity model												              OU model

Adaptive Monte Carlo fits of equations for Vmax and a for Nitrate

Assuming T dependence only						               	  Both T & Conc. Dependence
		    LogL = -74, AIC = 156										          LogL = -74, AIC = 157 

95%
width of
ensemble
+/- 1.96sa
=> 95% 
of obs. 
should be 
in this 
range.

Solid vertical 
lines show 
width of 
model
predictions
only (not 
including      
error).

Q10 = 6.3 for a

Q10 = 1.7 for Vmax	

Q10 = 2.3 for a

Q10 = 3.3 for Vmax	
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What’s going on here? 
MM              OU

Ks =  Vmax   
          a

In terms of MM, the strong increase in 
a with T causes Ks to decrease strongly 
with increasing T. 

r2 = 0.22

			               r2 = 0.18

r2 = 0.33		  r2 = 0.47

r2 = 0.35            r2 = 0.39
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Assuming the same T sensitivy (Ea) for both Vmax and a 
			   Affinity model												               OU model

Assuming T dependence only						                 Both T & Conc. Dependence
	 LogL = -73, AIC = 151										           LogL = -69, AIC = 143

3 param.
fits with 
EaV = EaA

95%
width of
ensemble
+/- 1.96sa
=> 95% 
of obs. 
should be 
in this 
range.

Solid vertical 
lines show 
width of 
model
predictions
only (not 
including      
error).

Adaptive Monte Carlo fits of equations for Vmax and a for Nitrate
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Summary of Results

								        AIC		    D		 Akaike weight, w
Affinity model
	 sep. T sens.			   156		  12.4			   0.002
	 same T sens. 			  151		    7.6			   0.02

OU model
	 sep. T sens.			   157	  	 13.4			   0.001
	 same T sens. 			  144		    0				   0.975

For Michaelis-Menten, Q10 = 1.9
	 very close to the value applied in most models (Eppley. 1972)

For Optimal Uptake, Q10 = 3.1
	 more sensitive to temperature, and agrees better with the data
	 close to the previous estimate of 3.4 for Vmax alone (Smith. GRL 2010).  
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Here plotted versus Concentration
Assuming T dependence only						                 Both T & Conc. Dependence
	 LogL = -73, AIC = 151										          LogL = -69, AIC = 143
		  Q10 = 1.9 for both												            Q10 = 3.1 for both

3 param.
fits with 
EaV = EaA

Adaptive Monte Carlo fits of equations for Vmax and a for Nitrate

The pattern is
more complex 
for Vmax. 

a clearly
tends to      
decrease with 
[NO3].

Modeled 
dependence 
on conc. is 
weaker than 
estimated
from KNO3 
alone, but it is 
still evident,
particularly 
for a.
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What’s going on here? 
MM              OU

Ks =  Vmax   
          a

In terms of MM, the concentration, 
this explains the increase in Ks with 
ambient nutrient concentration, 

as observed in multiple data sets, for 
both saltwater and freshwater. 

i.e., if Ks depended on temperature, 
different patterns would be observed 
in different oceanic regions vs. 
freshwater. 

(Smith. JGR 2011) 

r2 = 0.22

			     r2 = 0.16

r2 = 0.33		  r2 = 0.47

r2 = 0.00    r2 = 0.43
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No evidence that Vmax and a have different sensitivities to Temperature

Greater likelihoods for the assumption that they have the same 
sensitivity, with either uptake kinetics, 

i.e., there is no evidence that KNO3 depends on T. 

Recall that 	 Ks = 
Vmax

							         a

This is consistent with findings of a robust relationship between 
KNO3 and [NO3], for natural assemblages in freshwater and seawater, 
spanning different combinations of temperature and nitrate conc. 
(Collos et al. J. Phycol. 41, 2005; Smith et al. MEPS 384, 2009).  

However, note that this contrasts with the general (but not universal) 
tendency for Ks to increase with T in controlled single-species expts.  
(Eppley et al. Limnol. Oceanogr. 14, 1969; Dauta. Ann. Limnol. 18, 1982)
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see also Chen & Smith, 
Geosci. Model Devel. 2018)
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Data Assimilation using a large data set 
from obs. of TIN, chl, Primary Prod (NPP)
For example, vertical profiles of chl FlexPFT performs better, 					   

except for chl @ S1
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AM & other Metropolis algorithms are now practically useful! 

Bayesian Statistics + Fast Computers allow:  

	 More Meaningful Model-Data Comparisons & Model Selection

	 Extracting more Information from Data 

Coding the complicated algorithms is tedious, but it’s not necessary!	

Various Software is freely available

 	 Marko Laine’s MCMC toolbox for MatLab
		  https://mjlaine.github.io/mcmcstat/
	 OpenBUGS runs on Windows, Linux, MacOS 
		  http://openbugs.net/w/FrontPage
	 Bingzhang Chen’s FORTRAN code (Chen & Smith GMD, 2018) 
		  https://github.com/BingzhangChen/citrate

Thanks for your Attention! 

Conclusions 


